检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
下载Firefox李水荣
电话:0592-2188266
邮箱:sli@xmu.edu.cn
研究方向: 储能技术、氢能
2023至今 ok1122诸侯快讯网储能学系,副教授
2014 – 2023 ok1122诸侯快讯网/能源研究院生物能源研究所,助理教授
2012 – 2013 美国马里兰大学(UMD)化学与生物化学学院,助理研究员
2011 – 2014 天津大学环境科学与工程学院/化工学院,博士后
教育经历:
2008 - 2009 美国宾夕法尼亚州立大学(PSU)能源与矿物工程学院,联合培养博士生
2007 - 2011 天津大学,化学工艺,博士
2004 - 2007 天津大学,化学工艺,硕士
2000 - 2004 天津大学,化学工程与工艺/财务管理(辅修),学士
1.氢能技术与装备
2.能源材料
福建省高层次人才(C类)(2022)
厦门市高层次人才(C类)(2022)
天津市自然科学一等奖(排名第6)(2018)
福建省高校杰出青年科研人才培育计划(2016)
中国博士后基金第六批特别资助(2013)
优秀博士后国际化培养计划(2012)
中国博士后基金面上基金一等资助(2012)
1.X. Li, Q. Fan, Y. Wu, et al., Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: Effect of in-situ isomorphic substitution of transition metals and synergy of PtxSny alloy, Chem. Eng. J., 2023, 452(4): 139528. https://doi.org/10.1016/j.cej.2022.139528
2.Q. Wang, X. Li, J. Duan, et al., Rationally control the path of hydrodeoxygenation of palmitic acid over Ni/red-mud catalysts by surface decoration of oxophilic MoOx species, Fuel, 2022, 329, 125447. https://doi.org/10.1016/j.fuel.2022.125447
3.Q. Wang, J. Chen, X. Li, et al., Calcination temperature induced structural change of red mud and its enhanced catalytic performance for hydrocarbon-based biofuels production, Fuel Process. Technol., 2022, 233, 107316, https://doi.org/10.1016/j.fuproc.2022.107316
4.K. Jiang, K. Li, S. Li, et al., FeMo–N nanosheet arrays supported on nickel foam for efficient electrocatalytic N2 reduction to NH3 under ambient conditions, New J. Chem., 2022, 46, 16743-16751. https://doi.org/10.1039/D2NJ02892A
5.K. Zhou, M. Hu, T. Zhao, et al., Sn2+ Regulated Thermal Stability of the Cerium Oxide Lattice During Soot Combustion, Catal. Lett., 2022, https://doi.org/10.1007/s10562-022-04072-6
6.X. Li, Y. Wu, Q. Wang, et al., Effect of preparation method of NiMo/γ-Al2O3 on the FAME hydrotreatment to produce C15–C18 alkanes, Renew. Energ., 2022, 193, 1-12. https://doi.org/10.1016/j.renene.2022.03.115
7.X. Li, X. Yang, Q. Wang, et al., Synthesis of Pt-based TS-1 catalysts for selective hydrogenation to produce C15–C18 alkanes from the FAME: Effect of rare-earth metal additives, J. Clean. Prod., 2022, 350, 131520. https://doi.org/10.1016/-j.jclepro.2022.131520
8.J. Wang, X. Li, Y. Wu, et al., Nb2O5 modified NiAl2O4 catalysts for hydrodeoxygenation of methyl palmitate to long-chain alkane, Biomass Convers. Bior., 2022, https://doi.org/10.1007/s13399-022-02769-7
9.J. Chen, D. Wang, F. Luo, et al., Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts, Fuel, 2022, 314, 122780. https://doi.org/10.1016/j.fuel.2021.122780
10.X. Li, Q. Wang, Y. Wu, et al., Optimization of key parameters using RSM for improving the production of the green biodiesel from FAME by hydrotreatment over Pt/SAPO-11, Biomass Bioenergy, 2022, 158, 106379. https://doi.org/10.1016/j.biombioe.2022.106379
11.K. Li, Y. Li, K. Jiang, et al., The Importance of Molybdenum(IV) Active Sites in Promoting Electrochemical Reduction of N2 to NH3 with MoFe Bimetallic Catalysts, J. Electrochem. Soc., 2021, 168, 126518. https://doi.org/10.1149/1945-7111/ac3ff2
12.J. Chen, Y. Zhu, W. Li, et al., Production of diesel-like hydrocarbons via hydrodeoxygenation of palmitic acid over Ni/TS-1 catalyst, Biomass Bioenergy, 2021, 149, 106081. https://doi.org/10.1016/j.biombioe.2021.106081
13.X. Li, Q. Wang, J. Chen, et al., One-step hydrotreatment of inedible oil for production the second-generation biofuel over Pt-Sn/SAPO-11 catalyst, J. Anal. Appl. Pyrol., 2021, 156, 105121, https://doi.org/10.1016/j.jaap.2021.105121
14.K. Li, Y. Liu, B. Cui, et al., Nitrogen reduction to ammonia at ambient conditions using hydrochar prepared from cigarette filters as catalyst, Int. J. Hydrogen Energy, 2020, 45(41): 20875-2088221. https://doi.org/10.1016/j.ijhydene.2020.05.203.
15.B. Cui, Y. Li, S. Li, et al., Bi-Doped Ceria as a Highly Efficient Catalyst for Soot Combustion: Improved Mobility of Lattice Oxygen in CexBi1–xOy Catalysts, Energ. Fuel., 2020, 34, 9932-9939, https://doi.org/10.1021/acs.energyfuels.0c01090.
16.D. Sima, H. Wu, K. Tian, et al., Enhanced low temperature catalytic activity of Ni/Al–Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition, Int. J. Hydrogen Energy, 2019, 45(16): 9342-9352. https://doi.org/10.1016/j.ijhydene.-2020.01.209
17.B. Cui, L. Zhou, K. Li, et al., Holey Co-Ce oxide nanosheets as a highly efficient catalyst for diesel soot combustion, Appl. Catal. B Environ., 2020, 267, 118670. https://doi.org/10.1016/j.apcatb.2020.118670.
18.W. Li, M. Wei, Y. Liu, et al., Catalysts evaluation for production of hydrogen gas and carbon nanotubes from the pyrolysis-catalysis of waste tyres, Int. J. Hydrogen Energy, 2019, 44(36):19563-19572. https://doi.org/10.1016/j.ijhydene.2019.05.204
19.Y. Pu, S. Li, S. Yan, et al., An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming, Fuel, 2019, 241, 607-615. https://doi.org/10.1016/j.fuel.2018.12.067
20.B. Cui, S. Yan, Y. Xia, et al., CuxCe1-xO2 nanoflakes with improved catalytic activity and thermal stability for diesel soot combustion, Appl. Catal. A Gen., 2019, 578: 20~29. https://doi.org/10.1016/j.apcata.2019.03.025
21.S. Li, S. Yan, Y. Xia, et al., Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria, Appl. Catal. A Gen., 2019, 570: 299~307. https://doi.org/10.1016/j.apcata.2018.11.033
22.Z. Peng, Z. Li, Y. Liu, et al., Supported Pd nanoclusters with enhanced hydrogen spillover for NOx removal via H2-SCR: the elimination of ‘‘volcano-type’’ behavior, Chem. Commun., 2017, 53, 44, 5958-5961. (Cover Story) http://dx.doi.org/10.1039/c7cc02235b
23.H. Tian, S. Li, L. Zeng, et al., Assembly of Ordered Mesoporous Alumina Supported with Nickel Nanoparticles for CO Methanation with High Temperature Stability, Sci. China Mater., 2015, 58(1): 9-15 (invited) (Cover Story). http://dx.doi.org/10.1007/s40843-014-0014-1
24.F. Jiang, L. Zeng, S. Li, et al., Propane Dehydrogenation over Pt/TiO2-Al2O3 Catalysts, ACS Catal., 2015, 5(1): 438-447. http://dx.doi.org/10.1021/cs501279v.
25.S. Li, J. Gong, Strategies for Improving Performance and Stability of Ni-based Nanocatalysts for Reforming Reactions, Chem. Soc. Rev., 2014, 43(21): 7245-7256. http://dx.doi.org/10.1039/c4cs00223g (invited for 120th Anniversary of Tianjin University Special Issue) (Cover Story) Highlighted by Chemical Society Reviews as a "Hot Article," September 15, 2014.
26.C. Zhang, S., G. Wu, et al., Synthesis of Stable Ni-CeO2 Catalysts via Ball-milling for Ethanol Steam Reforming, Catal. Today 2014, 233, 53-60 (invited). http://dx.doi.org/10.1016/j.cattod.2013.08.013
27.Z. Han, S. Li, F. Jiang, et al., Propane Dehydrogenation over Pt-Cu Bimetallic Catalysts: the Nature of Coke Deposit and Role of Copper, Nanoscale 2014, 6(17): 10000-10008 (Cover Story). http://dx.doi.org/10.1039/c4nr02143f
28.X. Yuan, J. Zheng, Q. Zhang, et al., Liquid-phase Hydrogenation of Cinnamaldehyde over Cu-Au/SiO2 Catalysts, AIChE J., 2014, 60(9): 3300-3311. http://dx.doi.org/10.1002/aic.14522
29.C. Zhang, S. Li, G. Wu, et al., Steam Reforming of Ethanol over Skeletal Ni-based Catalysts: a Temperature Programmed Desorption and Kinetic Study, AIChE J., 2014, 60(2): 635-644. http://dx.doi.org/10.1002/aic.14264
30.G. Wu, S. Li, C. Zhang, et al., Glycerol Steam Reforming over Perovskites derived Nickel-based Catalysts, Appl. Catal. B Environ., 2014, 144, 277-285. http://dx.doi.org/10.1016/j.apcatb.2013.07.028
31.C. Zhang, S. Li, T. Wang, et al., Pt-based Core-shell Nanocatalysts with Enhanced Activity and Stability for CO Oxidation, Chem. Commun., 2013, 49(90): 10647-10649. http://dx.doi.org/10.1039/c3cc45957h.
32.C. Zhang, W. Zhu, S. Li, et al., Sintering-resistant Ni-based Reforming Catalysts via the Nanoconfinement Effect, Chem. Commun., 2013, 49(82): 9383-9385 (Cover Story). http://dx.doi.org/10.1039/c3cc43895c
33.G. Wu, C. Zhang, S. Li, et al., Hydrogen Production via Glycerol Steam Reforming over Ni/Al2O3: Influence of Nickel Precursors, ACS Sustain. Chem. Eng., 2013, 1(8): 1052-1062. http://dx.doi.org/10.1021/sc400123f
34.S. Li, C. Zhang, Z. Huang, et al., A Ni@ZrO2 Nanocomposite for Ethanol Steam Reforming: Enhanced Stability via Strong Metal-oxide Interaction, Chem. Commun., 2013, 49(39): 4226-4228. http://dx.doi.org/10.1039/c2cc37109j Highlighted by Chemical & Engineering News (ACS): "Nanoconfinement Prevents Nickel Catalyst from Fouling," November 12, 2012, p. 28. Highlighted by Chemical Communications as a "Hot Article": "Nanoconfinement leads to increased catalytic stability," November 29, 2012.
35.C. Zhang, H. Yue, Z. Huang, et al., Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-derived Ni/SiO2: Enhanced Metal-support Interaction and Catalytic Stability, ACS Sustain. Chem. Eng., 2013, 1(1): 161-173. http://dx.doi.org/10.1021/sc300081q
36.G. Wu, C. Zhang, S. Li, et al., Sorption Enhanced Steam Reforming of Ethanol on Ni-CaO-Al2O3 Multifunctional Catalysts Derived from Hydrotalcite-like Compounds, Energ. Environ. Sci., 2012, 5(10): 8942-8949 (Cover Story). http://dx.doi.org/10.1039/c2ee21995f Highlighted in Energy & Environmental Science Blog as a "Hot Article": "Sorption enhanced steam reforming of ethanol on multifunctional catalysts," July 9, 2012.
37.S. Li, C. Zhang, P. Zhang, et al., On the Origin of Reactivity of Steam Reforming of Ethylene Glycol on Supported Ni Catalysts, Phys. Chem. Chem. Phys., 2012, 14(12): 4066-4069 (Cover Story). http://dx.doi.org/10.1039/c2cp24089k
38.C. Zhang, P. Zhang, S. Li, et al., Superior Reactivity of Raney Ni-based Catalysts for Low-Temperature Steam Reforming to Produce CO Free Hydrogen, Phys. Chem. Chem. Phys., 2012, 14(10), 3295-3298. http://dx.doi.org/10.1039/c2cp24059a Highlighted in Physical Chemistry Chemical Physics Blog as a "Hot Article": "Superior Ni-based catalysts for CO-free hydrogen production," February 3, 2012.
39.S. Li, M. Li, C. Zhang, et al., Steam Reforming of Ethanol over Ni/ZrO2 Catalysts: Effect of Support on Product Distribution, Int. J. Hydrogen Energy, 2012, 37(3), 2940-2949. http://dx.doi.org/10.1016/j.ijhydene.2011.01.009
40.C. Zhang, S. Li, M. Li, et al., Enhanced Oxygen Mobility and Reactivity for Ethanol Steam Reforming, AIChE J., 2012, 58(2), 516-525. http://dx.doi.org/10.1002/aic.12599
41.M. Li, S. Li, C. Zhang, et al., Ethanol Steam Reforming on Ni/NixMg1-xO: Inhibition of Surface Nickel Species into the Support Bulk, Int. J. Hydrogen Energy, 2011, 36(1), 326–332. http://dx.doi.org/10.1016/j.ijhydene.2010.09.084
42.X. Wang, M. Li, S. Li, et al., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent a comparative study of thermodynamic and experimental work. Fuel Process. Technol., 2010, 91(12): 1812-1818. http://dx.doi.org/10.1016/j.fuproc.2010.08.003
43.X. Wang, N. Wang, M. Li, et al., Hydrogen production by glycerol steam reforming with in situ hydrogen separation: A thermodynamic investigation. Int. J. Hydrogen Energy. 2010, 35(19): 10252-10256. http://dx.doi.org/10.1016/j.ijhydene.-2010.07.140
44.M. Li, X. Wang, S. Li, et al., Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. Int. J. Hydrogen Energy, 2010, 35(13): 6699-6708. http://dx.doi.org/10.1016/-j.ijhydene.2010.04.105
45.X. Wang, M. Li, M. Wang, et al., Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel. 2009, 88(11): 2148-2153. http://dx.doi.org/10.1016/j.fuel.2009.01.015
46.H. Wang, X. Wang, M. Li, et al., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energy, 2009, 34(14): 5683-5690. http://dx.doi.org/10.1016/j.ijhydene.2009.05.118
47.X. Wang, S. Li, H. Wang, et al., Thermodynamic analysis of glycerin steam reforming. Energy & Fuels, 2008, 22(6): 4285-4291. http://dx.doi.org/10.1021/-ef800487r